AP 微积分:导数(Derivatives)常考试题及解析
1. 导数的基本计算(Basic Derivative Computation)
题目 1(Problem 1):求函数 f(x) = 3x^2 - 5x + 2 的导数(Find the derivative of f(x) = 3x^2 - 5x + 2)。
解析(Solution):
- 根据幂函数求导规则(Power Rule):
f'(x) = d/dx (3x^2) - d/dx (5x) + d/dx (2)
= 6x - 5
答案(Answer):f'(x) = 6x - 5
题目 2(Problem 2):求函数 g(x) = x^3 - 4x + 7 的导数(Find the derivative of g(x) = x^3 - 4x + 7)。
解析(Solution):
- 使用幂法则(Using the Power Rule):
g'(x) = d/dx (x^3) - d/dx (4x) + d/dx (7)
= 3x^2 - 4
答案(Answer):g'(x) = 3x^2 - 4
2. 乘法法则(Product Rule)
题目 1(Problem 1):求 f(x) = (x^2 + 1)(x - 3) 的导数(Find the derivative of f(x) = (x^2 + 1)(x - 3))。
解析(Solution):
- 使用乘法法则(Using the Product Rule):
f'(x) = (x^2 + 1)'(x - 3) + (x^2 + 1)(x - 3)'
= (2x)(x - 3) + (x^2 + 1)(1)
= 2x(x - 3) + x^2 + 1
= 2x^2 - 6x + x^2 + 1
= 3x^2 - 6x + 1
答案(Answer):f'(x) = 3x^2 - 6x + 1
3. 商法则(Quotient Rule)
题目 1(Problem 1):求 f(x) = (x^2 - 1) / (x + 2) 的导数(Find the derivative of f(x) = (x^2 - 1) / (x + 2))。
解析(Solution):
- 使用商法则(Using the Quotient Rule):
f'(x) = [(x^2 - 1)'(x + 2) - (x^2 - 1)(x + 2)'] / (x + 2)^2
= [(2x)(x + 2) - (x^2 - 1)(1)] / (x + 2)^2
= [2x(x + 2) - (x^2 - 1)] / (x + 2)^2
= [2x^2 + 4x - x^2 + 1] / (x + 2)^2
= (x^2 + 4x + 1) / (x + 2)^2
答案(Answer):f'(x) = (x^2 + 4x + 1) / (x + 2)^2
4. 链式法则(Chain Rule)
题目 1(Problem 1):求 f(x) = (3x^2 + 1)^5 的导数(Find the derivative of f(x) = (3x^2 + 1)^5)。
解析(Solution):
- 使用链式法则(Using the Chain Rule):
f'(x) = 5(3x^2 + 1)^4 * (6x)
= 30x(3x^2 + 1)^4
答案(Answer):f'(x) = 30x(3x^2 + 1)^4
5. 隐函数求导(Implicit Differentiation)
题目 1(Problem 1):已知 x^2 + y^2 = 25,求 dy/dx(Given x^2 + y^2 = 25, find dy/dx)。
解析(Solution):
- 对两边求导(Differentiate both sides):
d/dx (x^2) + d/dx (y^2) = d/dx (25)
2x + 2y dy/dx = 0
- 解出 dy/dx(Solve for dy/dx):
dy/dx = -x / y
答案(Answer):dy/dx = -x / y
6. 二阶导数(Second Derivative)
题目 1(Problem 1):求 f''(x) 若 f(x) = x^3 - 6x^2 + 9x + 2(Find f''(x) if f(x) = x^3 - 6x^2 + 9x + 2)。
解析(Solution):
- 先求 f'(x)(First, find f'(x)):
f'(x) = 3x^2 - 12x + 9
- 再求 f''(x)(Then, find f''(x)):
f''(x) = 6x - 12
答案(Answer):f''(x) = 6x - 12